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We extend earlier work[Phys. Rev. Lett.84, 3740 (2000)] on the statistical mechanics of the cubic one-
dimensional discrete nonlinear Schrödinger(DNLS) equation to a more general class of models, including
higher dimensionalities and nonlinearities of arbitrary degree. These extensions are physically motivated by the
desire to describe situations with an excitation threshold for creation of localized excitations, as well as by
recent work suggesting noncubic DNLS models to describe Bose-Einstein condensates in deep optical lattices,
taking into account the effective condensate dimensionality. Considering ensembles of initial conditions with
given values of the two conserved quantities, norm and Hamiltonian, we calculate analytically the boundary of
the “normal” Gibbsian regime corresponding to infinite temperature, and perform numerical simulations to
illuminate the nature of the localization dynamics outside this regime for various cases. Furthermore, we show
quantitatively how this DNLS localization transition manifests itself for small-amplitude oscillations in generic
Klein-Gordon lattices of weakly coupled anharmonic oscillators(in which energy is the only conserved quan-
tity), and determine conditions for the existence of persistent energy localization over large time scales.
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I. INTRODUCTION

There is a large interest in many branches of current sci-
ence in the topic of localization and energy transfer in
Hamiltonian nonlinear lattice systems(see, e.g., Ref.[1] for
a comprehensive review, and Refs.[2–4] for more recent
progress). Under quite general conditions, such lattices sus-
tain exact, spatially exponentially localized and time-
periodic, solutions termed intrinsically localized modes
(ILMs) or discrete breathers(DBs). Although their existence
as exact solutions has been rigorously proven in many ex-
plicit cases ([5,6], and, e.g., Refs.[7–9] and references
therein for extensions), there is still an ongoing debate re-
garding their relevance to actual physical phenomena, at
nonzero temperatures. Important fundamental questions con-
cern whether ILMs may exist in thermal equilibrium, or if
not, whether their typical lifetimes are long enough to con-
siderably influence transport properties of crystals, biomol-
ecules, etc.

A frequently studied example of a nonintegrable Hamil-
tonian lattice model is the discrete nonlinear Schrödinger
(DNLS) equation(see Refs.[10,11] for recent reviews of its
history, properties, and applications). This model is of great
interest from a general nonlinear dynamics point of view,
where it provides a particularly simple system to analyze
fundamental phenomena such as energy localization, wave
instabilities, etc., resulting from competition of nonlinearity
and discreteness, as well as from a more applied viewpoint
describing, e.g., arrays of nonlinear optical waveguides or
Bose-Einstein condensates in external periodic potentials.

The DNLS equation can be derived through an expansion on
multiple time scales of small-amplitude oscillations in a ge-
neric class of weakly coupled anharmonic oscillators[Klein-
Gordon(KG) lattice], and thus approximates the KG dynam-
ics over large but finite time-ranges(see, e.g., Refs.
[1,12,13]). A particular feature of the DNLS model is the
existence of a second conserved quantity in addition to the
Hamiltonian: the total excitation number(norm) of the solu-
tion. In the KG model, this quantity roughly corresponds to
the total action integral, which thus must be an approximate
invariant in cases where the DNLS description of the KG
dynamics is acceptable.

A fundamental question is, for which kinds of spatially
extendedinitial states may we expect spontaneous formation
of persistent localized modesin such lattices? The answer
generally requires a statistical-mechanics description of the
model. Due to the existence of a second conserved quantity,
it has been possible to obtain some analytical results for the
thermodynamic properties of the DNLS model in the grand-
canonical ensemble, by identifying the norm with the num-
ber of particles in the standard Gibbsian approach(this is
also its physically relevant interpretation in the Bose-
Einstein DNLS realization). In Ref. [14], it was found that
the onset of persistent localization could be identified with a
phase transition line in parameter space, such that on one
side the system thermalized according to the Gibbsian distri-
bution with well-defined chemical potential and(positive)
temperature, while on the other side the dynamics was asso-
ciated with a negative-temperature behavior(for finite sys-
tems) creating a small number of large-amplitude, standing
localized breathers. The transition line was shown to corre-
spond to the limit of infinite temperatures in the “normal”
regime. Similar properties were later found also for other
types of lattice models with two conserved quantities in Ref.
[15]. Most recently, in Ref. [16] Rumpf revisited the
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statistical-mechanics description of the DNLS localization
transition. Under the particular assumption of small-
amplitude initial conditions(an assumption not made in Ref.
[14]), he argues that the phase space generally can be divided
into two weakly interacting domains, corresponding to low-
amplitude fluctuations (“phonons”) and high-amplitude
peaks(breathers), respectively. Explicit expressions for mac-
roscopic quantities, valid not only in the “normal” regime
but in the full range of parameter space, can then be obtained
by assuming the two domains to be in thermal equilibrium
with each other, and the emergence of localized peaks in the
“anomalous” phase arises as the system strives for maximiz-
ing its total entropy. Under these conditions, the temperature
is not negative but infinite in the thermal equilibrium state
with coexisting large-amplitude breathers and small-
amplitude fluctuations.

Let us mention a number of reasons that have led us to
revisit and extend the results of Ref.[14]. First, so far only
the one-dimensional(1D) case with cubic nonlinearity was
considered. However, apart from the natural interest in con-
sidering two- and three-dimensional(2D and 3D) physical
situations, there is also a fundamental difference to the 1D
case: there is anexcitation thresholdfor creation of localized
excitations for the cubic DNLS model[17–19]. A similar
threshold also occurs in the 1D DNLS equation for noncubic
nonlinearities of the formucmu2scm with s.2 [17–19], and
generally the conditionsD.2 for the existence of an exci-
tation threshold inD dimensions is the same as the condition
for collapse of the ground-state solution of the corresponding
continuousNLS equation(e.g., Ref.[20]). For this reason,
one sometimes studies the 1D DNLS equation with largers
hoping to capture the main effects of higher dimensionality
in a simpler 1D model(e.g., Refs.[21–24]). Recently[25],
similar arguments were also used in the study of a 1D KG
chain with af8 on-site potential, to mimic the effects of an
excitation threshold for breathers in the thermalization dy-
namics of a three-dimensional KG lattice.(A similar relation
between the degree of nonlinearity and dimension is valid
also for KG lattices; see Ref.[17] and Ref.[26] for recent
extensions.) Thus, it is of interest to investigate the nature of
the statistical localization transition for various degrees of
nonlinearity and dimensions, in order to elucidate(i) whether
it is qualitatively affected by the existence of a breather ex-
citation threshold, and(ii ) whether quantitative effects aris-
ing from increasings agree with those from increasingD.

While the above connection motivates the study of par-
ticular on-site nonlinearities withs=2 and s=3, recent
progress in studies of Bose-Einstein condensates in optical
lattices also provides motivation for considering noninteger
values ofs,1. It has been suggested[27] that the effective
power of the nonlinearity in the tight-binding DNLS ap-
proximation depends on the effective dimensionalityd of the
condensate in each well, such thats=2/s2+dd, where d
=0,1,2, or 3.Moreover, it is tempting to suggest a connec-
tion between the statistical localization transition in the
DNLS model and experimentally observed superfluid-
insulator transitions of the condensate(e.g., Refs.[28,29]
and references therein).

Last, but not least, we wish to employ the results for the
DNLS model to give quantitative predictions for breather

formation in generic KG models, and in particular describe
what kinds of initial conditions yield long-lived breathers in
the regime of weak coupling and small averaged energy den-
sity where the DNLS approximation is justified. Although
particular examples of the manifestation of the DNLS local-
ization transition in KG models have been given earlier[13],
we derive here explicit general approximate expressions for
the transition line in terms of direct properties of the KG
initial state. Due to the violation of norm(or action) conser-
vation, the transition in the KG model is not strict, and we
perform numerical simulations to investigate how the long-
time dynamics is influenced by the slow variation of the
almost conserved quantity. We suggest that the approach pro-
posed here could be used to clarify the findings regarding the
role of breathers in thermalized KG lattices(with or without
energy gaps) of Refs. [25,30], which did not employ the
connection to the DNLS model.

The structure of this paper is as follows. Section II de-
scribes the statistical mechanics of general DNLS models.
Section II A generalizes the statistical-mechanics approach
of Ref. [14] to 1D models with general degrees of nonlinear-
ity. As particular examples, we consider initial conditions
taken as traveling(Sec. II A 1) and standing(Sec. II A 2)
waves. We obtain simple analytical conditions for the transi-
tion into the statistical localization regime, and illustrate with
numerical simulations the actual dynamics on both sides of
the transition. Section II B extends these results to higher
dimensions. In Sec. III, we describe how the results from the
DNLS model can be transferred into approximate conditions
for statistical formation of long-lived breathers in weakly
coupled Klein-Gordon chains, and confirm and illuminate
these predictions with numerical simulations. Section IV
gives some concluding remarks and perspectives.

II. STATISTICAL MECHANICS OF GENERAL
DNLS MODELS

A. 1D model with general degree of nonlinearity

Generalizing the 1D DNLS equation of Ref.[14] to in-
clude a nonlinearity of arbitrary(homogeneous) degree, we
consider the DNLS equation in the form

iċm + Cscm+1 + cm−1d + ucmu2scm = 0, s1d

with the two conserved quantities HamiltonianH
=omhCscmcm+1

* +cm
* cm+1d+f1/ss+1dgucmu2s+2j, and norm

(excitation number) A=om ucmu2. Compared to Eq.(1) of
Ref. [14], we have usedn=1 as the coefficient of the non-
linear term, included a coupling constantC.0 in front of the
coupling terms, and generalizeducmu2cm to ucmu2scm with
s.0. Note that although we formally discuss the case of
positive intersite coupling and positive nonlinearity, this is
not a restriction, since changing the sign ofC is equivalent to
the transformationcm→ s−1dmcm, while the same transfor-
mation followed by a time reversalt→−t is equivalent to
changing the sign of the nonlinearity. Thus, all obtained re-
sults can be directly transformed to the cases of negative
coupling and/or negative nonlinearity. Any finite coefficient
in front of the nonlinear term can also be obtained through a
simple rescaling.
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With a canonical transformation into action-angle vari-
ables,cm=ÎAmeifm, the Hamiltonian for a chain ofN sites
becomes

H = o
m=1

N S2CÎAmAm+1 cossfm − fm+1d +
1

s + 1
Am

s+1D s2d

and the norm

A = o
m=1

N

Am. s3d

We first note that the staggeredsq=pd stationary homo-
geneous plane-wave solutioncm

smind=ÎA /NeimpeiLt, with L
=−2C+sA /Nds, minimizesH at fixed A and N, for all s.
The minimum value is thus Hsmind=−2CA+f1/ss
+1dgAs+1/Ns. To prove this, write

H − Hsmind = o
m=1

N H2CSÎAmAm+1 cossfm − fm+1d +
A
N
D

+
1

s + 1
FAm

s+1 − SA
N
Ds+1GJ .

The first part is positive, since

o fÎAmAm+1 cossfm − fm+1d

+ sA/Ndg ù o fsA/Nd − ÎAmAm+1g

= 1
2 o sÎAm − ÎAm+1d2 ù 0.

The second part is also positive, which can be seen from
Hölder’s inequality: ouakbkuø souakupd1/psoubkuqd1/q if 1 / p
+1/q=1. Let ak=Am, bk=1, p=s+1,q=1+1/s, which
givesoAm

s+1−s1/NsdsoAmds+1ù0. Notice also thatHsmind is
bounded from below as a function ofA for any finite number
of sites N, with the global minimum Hsmind=−fs / ss
+1dgNs2Cd1+1/s obtained forA=Ns2Cd1/s.

Similarly to the work of Ref.[14], we use standard Gibb-
sian statistical mechanics to predict macroscopic average
values in the thermodynamic limit, by treating the normA as
analogous to “number of particles” in the grand-canonical
ensemble. As in Eq.(2) in Ref. [14], the grand-canonical
partition function is thus defined as

Z =E
0

` E
0

2p

p
m=1

N

dfmdAme−bsH+mAd, s4d

whereb;1/T (in units of kB;1) and m play the roles of
inverse temperature and chemical potential, respectively. Us-
ing Eqs.(2) and(3) and integrating over the phase variables
fm yields

Z = s2pdNE
0

`

p
m

dAmI0s2bCÎAmAm+1d 3 e−bAmhfAm
s /ss+1dg+mj,

s5d

whereI0szd=s1/pde0
p ez cos udu is the modified Bessel func-

tion of the first kind. From this expression, one could pro-
ceed as in Ref.[14] by symmetrizing the partition function
and using the transfer integral operator to obtain thermody-
namic quantities in the limitN→`, corresponding to the
regime insA ,Hd parameter space with well-defined chemi-
cal potential and(positive) temperature. This is, however, not
our main purpose here. Instead, we focus on the phase-
transition line defined by the boundary of this regime(b
=0, m=`, with bm;g finite), which signals the transition
into the regime of persistent localization, suggested in Ref.
[14] to be associated with a negative-temperature-type be-
havior for finite lattices and time scales.

Close to the high-temperature limitb→0+, we can ap-
proximate the slowly increasing Bessel function withI0<1
(which is mathematically equivalent to lettingC→0, corre-
sponding physically to thermalized independent units). The
partition function then becomesZ.f2pysb ,mdgN, where

ysb,md =E
0

`

e−bmxe−bxs+1/ss+1ddx=E
0

`

e−bmxF1 −
bxs+1

s + 1
+

1

2
Sbxs+1

s + 1
D2

+ ¯Gdx

=
1

bm
−

b

s + 1
E

0

`

xs+1e−bmxdx+
1

2

b2

ss + 1d2E
0

`

x2ss+1de−bmxdx+ ¯ .

But e0
` xne−axdx=Gsn+1d /an+1 [whereG is the Gamma func-

tion, Gsn+1d=n! for integern]. This yields

ysb,md =
1

bm
−

b

s + 1

Gss + 2d
sbmds+2 +

1

2

b2

ss + 1d2

Gs2s + 3d
sbmd2s+3 + ¯ .

Thus, close to the limit ofb→0,m→` with bm=g const,
we can neglect all higher-order terms inb, and obtain
ysb ,md.s1/bmd−fbGss+1d / sbmds+2g. Finally, for the par-

tition function in the high-temperature limit, we get

Z . s2pdN 1

sbmdNS1 −
bGss + 1d
sbmds+1 DN

. s6d

For small b, this reduces to lnZ.N lns2pd−N lnsbmd
−NfbGss+1d / sbmds+1g, so that we have in the high-
temperature limit for the average energy
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kHl = Sm

b

]

]m
−

]

]b
Dln Z .

NGss + 1d
sbmds+1 , s7d

and for the average norm

kAl = −
1

b

] ln Z
]m

.
N

bm
−

NGss + 2d
msbmds+1 . s8d

(The second term here is negligible.) Thus, the relation be-
tween the energy densityh;kHl /N and the norm density
a;kAl /N in the high-temperature limit is

h = Gss + 1das+1, s9d

whereGss+1d can be replaced bys! for integers. Note that
the quantityg=bm indeed is well-defined and finite in the
high-temperature limit for any nonzero norm density,g
.1/a according to Eq.(8).

For s=1, the corresponding phase diagram was illustrated
in Fig. 1 of Ref.[14]. Thus, for any given norm densitya,
typical initial conditions with(Hamiltonian) energy densityh
smaller than the critical value(9) are expected to thermalize
(after “sufficiently” long times) according to a Gibbsian
equilibrium distribution at temperatureT=1/b and chemical
potential m. The correspondence betweensa,hd and sb ,md
generally has to be found numerically through the transfer
integral formalism as in Ref.[14], but in the small-amplitude
limit a→0 analytic expressions can be obtained as shown in
Ref. [16], Eqs.(7) and (8). Numerical evidence that such a
thermalization generally takes place after sufficiently long
integration times was given in Fig. 2 of Ref.[14] (for s=1).

On the other hand, for initial conditions with energy den-
sity h larger than the critical value(9), this description breaks
down, and one finds numerically that persistent large-
amplitude standing breathers are created. Heuristically, this
can be understood as follows: For fixed normA, it is gener-
ally possible to maximize the HamiltonianH, and the maxi-
mizing solution is a single-site peaked, exponentially local-
ized stationary standing breather(see, e.g., Ref.[18]), which
for largeA becomes essentially localized at one site so that
Hsmaxd.As+1/ ss+1d. Considering in the microcanonical en-
semble(fixed A, H, andN) the entropySsH ,A ,Nd (i.e., the
logarithm of the number of microstates) as a function ofH,
it is zero atHsmindsA ,Nd defined above, increases towards its
maximum when Eq.(9) is fulfilled and T=` (since 1/T
=]S/]HuA,N), and then again decreases towards zero at
HsmaxdsAd. Thus, in the microcanonical ensemble at finiteA
andN, the temperature is well-defined and becomes negative
whenh=H /N is larger than the critical value(9). Returning
to the grand-canonical ensemble, it is then possible for the
part of the system which is in the negative-temperature re-
gime to increase its entropy by transferring some of its su-
perfluous energy into localized breathers, which consume
only a small amount of the norm. In other words, the “over-
heated” negative-temperature system “cools itself off” by
creating breathers as “hot spots” of localized energy. Such a
mechanism for energy localization works quite generally in
systems with two conserved quantities(see, e.g., Ref.[15]
and references therein). Indeed, this type of argument could
be used to explicitly calculate the thermodynamic properties

of the DNLS model in the limit of smalla, where phase
space naturally divides into a small-amplitude “fluctuation”
part and a large-amplitude “breather” part[16] which only
interact weakly. In that case, the equilibrium state which
maximizes the total entropy forh larger than the critical
value(9) should consist of one single breather, with the rest
of the lattice corresponding to an ordinary Gibbsian distribu-
tion atT=` [16] (although the numerical simulations in Ref.
[16] never reached such a state, but rather one with a finite
breather density). However, whena increases, the large-
amplitude and small-amplitude parts will not separate
straightforwardly anymore, and the thermodynamic equilib-
rium properties for generala remain unknown. Some of the
numerical simulations reported below aim at shedding some
light on this issue.

Let us now discuss the thermodynamical equilibrium dis-
tributions for some particularly interesting choices of initial
conditions. For certain families of exact solutions, we can
analytically compute the curveshsad, and thus within these
families obtain the transition into the statistical localization
regime by finding their intersections with the phase-
transition line(9). Evidently, if the initial condition is strictly
an exact solution, thermalization will not occur, but often
solutions are linearly unstable, e.g., through modulational
[12] or oscillatory[13,31,32] instabilities, which may cause
rather rapid thermalization(see, e.g., examples fors=1 in
Refs.[14,31]). Even for weakly perturbed linearly stable so-
lutions as initial conditions, it is expected that generically
nonlinear instability mechanisms finally should lead to ther-
modynamic equilibrium; however, the equilibration times
can be extremely long as Arnol’d-type diffusion processes
are involved.

In the numerical investigations below, we mainly focus on
the distribution functionpsAmd for the amplitudesAm= ucmu2,
which most clearly illustrates the localization properties. In
the standard Gibbsian regime, the statistical prediction for
psAmd can also be obtained through the transfer integral for-
malism as show in Ref.[14]. Here, let us only note that close
to the high-temperature limitb→0, this prediction yields
(again by approximatingI0<1)

log psAmd , − gAm − bAm
s+1/ss + 1d, s10d

i.e., the curvature is zero forb=0 and becomes negative
(positive) for positive (negative) temperatures. Thus, nega-
tive temperatures favor large-amplitude excitations.

1. Traveling waves

For a traveling wave, which is an exact solution of the
form cm=ÎaeiqmeiLt (with L=2C cosq+as), we have

h = 2Ca cosq +
as+1

s + 1
. s11d

Similarly as for the well known cases=1 [12], traveling
waves withuqu,p /2 are modulationally unstable and those
with p /2, uquøp linearly stable also for generals.0 (see,
e.g., Ref.[27]). To find when such a solution crosses theb
=0 curve, we put Eq.(11) equal to Eq.(9), which yields

M. JOHANSSON AND K. Ø. RASMUSSEN PHYSICAL REVIEW E70, 066610(2004)

066610-4



as =
2ss + 1dC cosq

Gss + 2d − 1
, s12d

where, as before,Gss+2d can be replaced byss+1d! for
integers. Thus, for anys and uqu,p /2, there is a threshold
value for the norm density given by Eq.(12), so that only
above this threshold will one be in the “normal” Gibbsian
positive-temperature regime, while below it we expect statis-
tical localization. The predicted threshold, plotted in Fig. 1,
becomes quite small for larges due to the factorial in the
denominator, but increases rapidly fors smaller than 1(e.g.,
for s=0.4, corresponding to three-dimensional Bose-
Einstein condensates in the model of Ref.[27], the threshold
is a<455 for q=0 andC=1). On the other hand, forp /2
, uqu,p, one is always in the normal thermalizing
regime.

In Fig. 2, we show some examples of resulting distribu-

tion functionspsAd obtained from long-time numerical inte-
grations of constant-amplitudesq=0d initial conditions. For
the small values=0.4 [Fig. 2(a)], we can note that the nu-
merics perfectly confirms the predicted transition ata<455
[with a linear dependence logpsAd,−gA according to Eq.
(10)]. However, to achieve an appreciable difference be-
tween the distributions at either side of the transition point
(compared, e.g., to the cases=1 illustrated in Figs. 2 and 3
in Ref. [14]), we had to choose initial conditions quite far
from the transition line. Then, fittingg andb in Eq. (10) to
the obtained distributions, we find small values ofb with the
expected(opposite) signs in the two cases. We attribute the
smallness ofb even for values ofa far from the transition
point to the weakness of the nonlinear effects for smalls.
Moreover, as we illustrate with another example in the fol-
lowing subsection, the thermalizing dynamics in the localiza-
tion regime is extremely slow for smalls. Although we can
clearly identify several breatherlike excitations with ampli-
tudes considerably higher than their surroundings in the
simulations fora,455, they are generally not persistent but
transient and recurring. Thus, it is necessary to remember
that curves such as those fora,455 in Fig. 2(a), obtained
after long but finite-time integrations, generally do not rep-
resent true equilibrium distributions in the localization re-
gime, but rather an intermediate stage in the approach to
equilibrium by breather-forming processes in a negative-
temperature regime. Thes=3 case[see Fig. 2(b)] contrasts
this by showing an appreciable number of persistent breath-
erlike excitations in the breather-forming regimea=0.6
(circles). For s=3, the critical amplitude isa.0.7, and we
see that the distribution functions obey the predicted behav-
ior Eq. (10) both in the breather-forming and in the normal
regime sa=0.8d (squares) until finite-size effects set in at
A.4.

2. Standing waves

In addition to traveling waves, there are also exact solu-
tions in the form ofstanding waves(SWs), which are time-
periodic nonpropagating(i.e., with their complex phase spa-

FIG. 1. Maximum value of norm densitya for statistical local-
ization to occur, according to Eq.(12), from initial condition being
a traveling wave of wave vectorq, for 1D DNLS with variouss.
From top to bottom atq=0: s=2/5,1/2,2/3,1,2,3.Inset is a
blow-up for smalla.

FIG. 2. Numerically obtained distribution functionspsAmd resulting from long-time integrationst=1.13106d of (unstable) constant-
amplitude initial statescms0d=Îa, for a 1D DNLS chain withN=10 000sC=1d. (a) s=0.4, a=100 (squares), a=455 (triangles), anda
=1000(circles). (b) s=3, a=0.6 (circles), anda=0.8 (squares). The dashed lines represent best fits to Eq.(10).

STATISTICAL MECHANICS OF GENERAL DISCRETE… PHYSICAL REVIEW E 70, 066610(2004)

066610-5



tially constant) solutions, with an inhomogeneous amplitude
distribution ucmu2 being periodic or quasiperiodic in space
[13,31,32]. In the linear limita→0, a standing wave of wave
vector Qs0, uQu,pd is a linear combination of two coun-
terpropagating traveling waves q= ±Q, i.e., cm

.Î2a sinsQm+wdeiLt for small a. As a increases, one finds
[13,31,32] that only for particular phasesw can these linear
SWs be continued into exact nonlinear SW solutions. These
can be divided into two distinct classes: phasesw= ± sp
−Qd /2−m8Q (m8 integer) continue into solutions called
“ type E,” while either w=−m8Q (for genericQ) or w=−sm8
+ 1

2
dQ (for special Q=fs2k+1d / s2k8+1dgp, k,k8 integers)

yield solutions called “type H.” (These two types of solutions
can be represented as elliptic and hyperbolic cycles, respec-
tively, of the cubic real 2D map[13,31,32] when s=1.) In
physical space, they are distinguished by their positioning in
the lattice, with type-E SWs centered symmetrically between
lattice sites atm=m8+ 1

2, and type-H SWs centered antisym-
metrically either around a lattice site atm=m8 (genericQ) or
between sites atm=m8+ 1

2 ( for Q=fs2k+1d / s2k8+1dgp), re-
spectively. In the opposite limit of largea, which is math-
ematically equivalent toC→0, both classes of solutions can
be generated from a circle map, distributing solutionscm

=0, ±ÎAeiAst periodically or quasiperiodically in space
[13,31,32]. Type-E solutions are generally linearly unstable,
while type-H solutions are linearly stable for largea/C but
generally oscillatorily unstable for smalla/C (for s=1, see
Refs.[13,31,32]).

Particularly interesting in this context are the SWs
with Q=p /2, which have the form c2n+1=0,c2n+2

=s−1dnÎ2aeis2adst (type H) and c2n+1=c2n+2=s−1dnÎaeiast

(type E), respectively. For smalla, any wave(traveling or
standing) with wave vectorp /2 coincides with the phase-
transition line(9) as noted in Ref.[16]. This is not true in
general, and in particular it is clear from Eq.(12) that a
traveling wave withq=p /2 lies inside the regime of “nor-
mal” thermalization for all nonzeroa. On the other hand, it

was noticed in Refs.[13,31] that fors=1, the curvehsad for
the Q=p /2 type- H SW indeed coincides with the phase-
transition line(9), and that type- H SWs withuQu,p /2 gen-
erally resulted in the creation of large-amplitude breathers,
and those withp /2, uQu,p in “normal” thermalization
(see, e.g., Figs. 6–9 in Ref.[31]). However, for generals we
now have the relation forQ=p /2 type-H SWs,

h =
2s

s + 1
as+1. s13d

Thus, only for the particular cases=1 considered in Refs.
[13,31] do the coefficients in Eqs.(9) and (13) agree. In
general, the transition line into the phase of statistical local-
ization and the line defined by theQ=p /2 type-H SW are
different. For 0,s,1, thep /2 type-H standing wave will
always be in the breather-forming regime, while fors.1 it
will always be in the normal thermalizing regime. This is
illustrated by the numerical simulations in Fig. 3.

For s=3, Fig. 3(a) clearly confirms a positive-
temperature behavior, with a distribution function well fitted
by Eq. (10) with positive b, and very small probability for
large-amplitude excitations. Fors= 2

3 we do observe, as pre-
dicted, a small positive curvature of the distribution function
at finite times, as well as a tendency towards creation of
large-amplitude breathers[e.g., the four points betweenA
=12 andA=14 in Fig. 3(a)]. However, even for very large
systems and long integration times, the breathers found are
not persistent but transient and recurring, as for the small-s
case discussed in the previous subsection.

To check to what extent the finite-time averaged distribu-
tion functions in Fig. 3(a) are representative for the true equi-
librium distributions, we monitor the average of the contri-
bution to the total Hamiltonian from the coupling part,hcoup
[first term in Eq.(2)]. By definition,khcoupl=0 in equilibrium
at the transition lineb=0, and, by the particular choice of
p /2 type- H SWs as initial conditions,hcoups0d=0 for all s.
For s=1, Fig. 3(b) confirms thatkhcoupl, although being

FIG. 3. (a) Time-averaged(non-normalized) distribution functionspsAmd for weakly perturbedp /2 type-H SWs witha=1 s. . . ,
−Î2,0,Î2,0, . . .d as initial conditionssC=1d. s* d: s= 2

3; s+d: s=1; s3d: s=3. The points are obtained by averaging over 96 time instants
for 10 000ø tø200 000 andN=10 000ss= 2

3
d, 177 time instants for 500 000ø tø1 380 000 andN=1000ss=1d, and 91 time instants for

10 000ø tø55 000 andN=1000 ss=3d. Straight lines fors= 2
3 and s=1 are predictions from Eq.(10) with b=0 andg=1/a=1, while

curve fors=3 is a prediction from Eq.(10) with fitted values ofb=0.042 andg=0.65.(b) Average(over space and time) of the coupling
part of h [i.e., k2CÎAmAm+1 cossfm−fm+1dl] vs time for the simulations in(a) with, from top to bottom att=10 000,s= 2

3, s=1, ands

=3, respectively. Magnification in the inset illustrates the slow long-time decrease fors= 2
3.
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positive for intermediate times, asymptotically approaches
zero as expected. Fors=3, khcoupl approaches asymptoti-
cally a negative value, which is typical in the positive-
temperature regime, and implies a preference for out-of-
phase excitations at neighboring sites. Fors= 2

3, a superficial
look at the main Fig. 3(b) seems to indicate an asymptotic
approach to a strictly positivekhcoupl, signifying a preference
for in-phase excitations at neighboring sites. However, as is
shown by the inset in Fig. 3(b), the simulation indeed has not
reached a stationary regime even aftert=23105, and there is
a very slow decrease, close to logarithmic in time, ofkhcoupl.
We attribute this to an ongoing process of formation of large-
amplitude breathers. Note that, if the hypothesis of approach-
ing a thermodynamic equilibrium state consisting of one(or
a finite number of) breather(s) together with an infinite-
temperature phonon bath would be correct, we should always
asymptotically havekhcoupl=0 in the breather-forming re-
gime for N→`. Thus, our simulations are consistent with
(although by no means proving) this hypothesis. However,
extrapolating the tendency of the curve in the inset in Fig.
3(b) to larger times would yieldkhcoupl=0 only after t
,1070, i.e., the times to reach a true equilibrium state in the
breather-forming regime are indeed extremely long. Let us
stress only for completeness that the observed slow decrease
of khcoupl is a true behavior of the system, and not an artifact
of numerical drifting of the conserved quantities during the
simulation time. Indeed, there is a slow numerical drift ofh
(increasing approximately 4310−12 per time unit), but this is
negligible compared with(and in addition in the opposite

direction to) the tendency in Fig. 3(b) over the used integra-
tion time.

In this context, we should also remark that, in contrast to
the ordinary DNLS cases=1 where theQ=p /2 type-H
SWs are always linearly unstable for smalla, this is not the
case for 0,s,

1
2, where they are linearly stable for alla. It

follows from a standard linear stability analysis(cf., e.g.,
Ref. [34]) that these solutions(also termed “period-doubled
states” in Ref.[34]) are oscillatorily unstable for small-
wavelength relative perturbations when the condition
s2ad2s+16s1–2sd,0 is fulfilled, and linearly stable other-
wise. Note that this condition is always fulfilled for smalla if
s.

1
2, but can never be fulfilled ifs,

1
2.

Regarding the type-E SW withQ=p /2, we note that this
solution is a special case of the general class of equivalent
solutionsc2n+1=s−1dnÎaeiast ,c2n+2=s−1dnÎaeia0eiast, where
a0 can take any real value(this class of solutions was called
“p-p states” in Ref.[33] and “phase states” in Ref.[34]).
Putting a0=0 yields the type-E SW withQ=p /2, while a0
=p /2 yields the traveling wave withq=p /2. Thus, h
=as+1/ ss+1d for all solutions in this class, and they belong
to the “normal” thermalizing regime for all nonzeroa.

B. Higher-dimensional models

An important point to note is that the results from the
previous subsection are readily generalized to higher-
dimensional DNLS equations. Considering, e.g., the 2D case
for a quadratic lattice ofN sites, we can write the expression
for the Hamiltonian analogous to Eq.(2) as

H = o
m,n=1

ÎN H2CfÎAm,nAm+1,n cossfm,n − fm+1,nd + ÎAm,nAm,n+1 cossfm,n − fm,n+1dg +
1

s + 1
Am,n

s+1J . s14d

With this Hamiltonian, the expression for the grand-canonical partition function analogous to Eq.(5) becomes

Z = s2pdNE
0

`

p
m,n=1

ÎN

dAm,nI0s2bCÎAm,nAm+1,ndI0s2bCÎAm,nAm,n+1de−bAm,nfsAm,n
s /s+1d+mg, s15d

from which we obtain the behavior close to the high-
temperature limitb→0+ again by approximatingI0<1.
Thus, in this limit all results are independent of dimension,
which is a consequence of the equivalence of this limit to
C→0, i.e., thermalized independent units which neglect all
interaction terms. Thus the expression(9) for the phase-
transition line is indeed valid for givens in any dimension.

To take a specific example in 2D, consider again a trav-
eling plane wavecm,n=Îaeisqxm+qyndeiLt [with L=2Cscosqx

+cosqyd+as]. It follows from standard analysis(see, e.g.,
Ref. [35]) that the traveling waves are linearly stable only if
p /2, uqxu , uqyuøp, and modulationally unstable if eitheruqxu
or uqyu (or both) are smaller thanp /2. We immediately obtain

the expression for the Hamiltonian density by just replacing
cosq with cosqx+cosqy in the 1D expression(11), and
likewise we obtain the expression for the statistical localiza-
tion transition analogous to Eq.(12),

as =
2ss + 1dCscosqx + cosqyd

Gss + 2d − 1
. s16d

Thus, a necessary condition for breather formation from 2D
traveling waves is to have cosqx+cosqy.0, i.e., eitheruqxu
or uqyu (but not necessarily both) has to be smaller thanp /2.
Just as for 1D, the dynamics always enters the “normal”
thermalizing regime if the norm density is large enough, and
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the largest possiblea for breather formation occurs forqx
=qy=0. Note that for this constant-amplitude solution, the
threshold ina for s=1 is multiplied by an additional factor
of 2 compared to the analogous 1Dq=0 case in Eq.(12),
becoming 8C instead of 4C.

Numerical illustrations of the resulting distribution func-
tions in either regimes, together with predictions according
to Eq. (10), are shown in Fig. 4. Note that in the breather-
forming regime[Figs. 4(a), 4(b), and 4(d)], the distributions
closely follow the straight linespsAmd=s1/ade−Am/a corre-
sponding tob=0 in Eq. (10) up to some threshold value of
Am. We find that extending the integration time, this breaking
point typically moves in the direction of largerAm. For small
integration times, one finds a smooth curve with positive
curvature, indicating a negative-temperature behavior as dis-
cussed in Ref.[14]. However, for larger times the tendency is
that the curve becomes discontinuous, with the part below
the breaking point corresponding to a phonon bath atT=`,
and the points above to large-amplitude breathers with in-
creasing amplitudes. This is illustrated by Fig. 4(d). Thus,
this suggests that the separation of phase space into two parts
as proposed in Ref.[16] is valid also for largera, although,
as discussed in previous subsections, the time scales to actu-
ally reach a true equilibrium state may be enormous and
beyond the reach of any numerical simulations.

It should be obvious that also the extension to 3D is
straightforward. We can, e.g., consider a traveling plane
wave in a cubic lattice,cmx,my,mz

=Îaeisqxmx+qymy+qzmzdeiLt, and

obtain immediately the location of the localization transition
line by adding the term cosqz to the numerator of Eq.(16).
Taking s=1 and qx=qy=qz=0, the critical value then be-
comesa=12C for a constant-amplitude solution in 3D. This
is illustrated numerically in Fig. 5. Again we see that the
distribution[Fig. 5(a)] has the expected curvature both in the
breather-forming regime(blue circles) where b,0 and in
the normal regime(black circles) whereb.0. In Fig. 5(b),
we see that high-amplitude breathers indeed do exist in the
system fora=9.

To conclude this section, we thus see that, in contrast to
the condition for the existence of an energy threshold for
creation of a single breather, which only involves the product
sD, there is no equivalence between the spatial dimension
and the degree of nonlinearity as concerns the existence of an
equilibrium state with persistent breathers. Indeed, the pres-
ence or absence of such a threshold only affects the approach
to equilibrium and not the qualitative features of the equilib-
rium state itself. The degree of nonlinearity and the dimen-
sionality in our case actually tend to work in opposite direc-
tions, as we have seen, e.g., for a constant-amplitude initial
conditioncn=Îa, that increasings decreases the maximum
amplitude a for which persistent breathers form[see Eq.
(12)], while increasing the dimension increases it.

III. KLEIN-GORDON CORRESPONDENCE TO DNLS
PHASE-TRANSITION LINE

Let us now discuss how the DNLS statistical localization
transition manifests itself for general KG chains of coupled

FIG. 4. (Color online) Resulting distribution functionspsAmd after long-time integrations of initial conditions consisting of weakly
perturbed 2D constant-amplitudesqx=qy=0d unstable solutions with(a) a=5, (b) a=7, and(c) a=8. Curves in(a)–(c) have been obtained
by averaging over a number of different random initial perturbations[8 in (a) c 14 in (b), and 100 in(c)]; system size 1283128 sN
=16 384d; integration timest=500 000(a), 200 000(b), respectively 50 000(c). Curves in(d) have been obtained from one single realization
for a 50350 system witha=7, by averaging over 20 different time instants in the intervals 500, t,10 000 (squares) and 110 000, t
,300 000 (circles), respectively. The scales are such that, in(a)–(c), the dots with smallest probability correspond to one site in one
realization, and in(d) to one site at one time instant. Straight lines are predictions according to Eq.(10) with b=0. (s=C=1.)
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classical anharmonic oscillators. In order to derive approxi-
mate expressions for quantities corresponding to the DNLS
Hamiltonian and norm densities valid for small amplitudes
and weak coupling, we follow the perturbative approach out-
lined in Ref.[13] (see also Ref.[12]). The KG Hamiltonian
H for a chain ofN oscillators is given by

H = o
n=1

N F1

2
u̇n

2 + Vsund +
1

2
CKsun+1 − und2G , s17d

where the general on-site potentialVsud for small-amplitude
oscillations can be expanded as

Vsud =
1

2
u2 + a

u3

3
+ b8

u4

4
+ ¯ . s18d

The KG equations of motion then take the form

ün + V8sund − CKsun+1 + un−1 − 2und = 0. s19d

Considering small-amplitude solutionsunstd with typical os-
cillation amplitudesuunu,e, they can be formally expanded
in a Fourier series as

unstd = o
p

an
spdeipvbt, s20d

wherevb is close to some linear oscillation frequency and
the Fourier coefficients are slowly depending on time,
an

spdse2td. Due to exponential decay of the Fourier coefficients
in p, they must satisfyan

spd,ep for p.0, while an
s0d,e2.

Moreover,an
spd=an

s−pd* sinceun is real. Inserting Eq.(20) into
Eq. (19) yields

o
p

fän
spd + 2ipvbȧn

spd + s1 − p2vb
2dan

spd − CKsan+1
spd + an−1

spd − 2an
spddgeipvbt + aFo

p

an
spdeipvbtG2

+ b8Fo
p

an
spdeipvbtG3

= 0 +Ose4d.

s21d

Then, we derive from Eq.(21) for the respective harmonicsp=0,1,2 thethree equations[13]

an
s0d + 2auan

s1du2 − CKsan+1
s0d + an−1

s0d − 2an
s0dd = 0 +Ose4d, s22d

2ivbȧn
s1d + s1 − vb

2dan
s1d + 2asan

s1dan
s0d + an

s1d*an
s2dd + 3b8uan

s1du2an
s1d − CKsan+1

s1d + an−1
s1d − 2an

s1dd = 0 +Ose5d, s23d

s1 – 4vb
2dan

s2d + asan
s1dd2 − CKsan+1

s2d + an−1
s2d − 2an

s2dd = 0 +Ose4d. s24d

FIG. 5. (Color) (a) Distribution functionspsAmd after integrations over long but finite timesst=53106d of initial conditions consisting
of weakly perturbed 3D constant-amplitudesqx=qy=qz=0d unstable solutions witha=9 (blue), a=12 (red), anda=15 (black). System size
64364364 sN=262 144d, s=C=1. (b) Intensities, in a representative 15315315 subbox of the simulation box, at the end of the
simulation fora=9 in (a). Red and yellow patches are localized breathers.
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Consider first the case of a symmetric potential. Then, all
odd powers ofu in the expansion(18) vanish [implying a
=0 and Ose5d in Eq. (21)], and we immediately obtain a
DNLS equation toOse5d by considering Eq.(23) for the
fundamental harmonicp=1.

For the general(nonsymmetric) case, we proceed as in
Ref. [13] by assuming weak couplingCK,e2 (note that this
assumption is not necessary to derive the DNLS equation for
the symmetric case). Then, we can solve Eq.(22) to obtain

an
s0d = − 2auan

s1du2 + Ose4d, s25d

and Eq.(24) to obtain

an
s2d =

a

3
san

s1dd2 + Ose4d. s26d

[These are the weak-coupling limits of the more general so-
lutions (15)–(18) in Ref. [13].] Inserting Eqs.(25) and (26)
into Eq. (23), we get the general DNLS equation toOse5d,

2ivbȧn
s1d + s1 − vb

2dan
s1d − CKsan+1

s1d + an−1
s1d − 2an

s1dd

+ S−
10

3
a2 + 3b8Duan

s1du2an
s1d = 0 +Ose5d. s27d

Definingd8=svb
2−1d /CK, l8;−10

3 a2+3b8, s8;sgnsl8d, re-
defining time ast8=sCK /2vbdt, rescaling the amplitudes and
moving into a rotating frame by defining cn8
=Îsul8u /CKdan

s1deisd8−2dt8, and neglecting termsOse5d, the
DNLS equation in the new(slow) time variablet8 takes the
standard form

iċn8 − scn+18 + cn−18 d + s8ucn8u
2cn8 = 0, s28d

equivalent to Eq.(1) with s=1. For Eq.(28), we have the
familiar conserved quantities as normA=on=1

N ucn8u
2 and

Hamiltonian H=on=1
N fcn8

*cn+18 +cn8cn+18* −ss8 /2ducn8u
4g. With

h=kHl /N, a=kAl /N as before, the transition curve(9) be-

tween breather-forming and non-breather-forming regimes
becomes h=−s8a2 (the breather regime is above for
s8=−1 and below fors8= +1). We now wish to express this
condition in KG quantities. First, we express the norm as

A =
ul8u
CK

o
n=1

N

uan
s1du2. s29d

By taking an
s1d* 3 s27d−an

s1d3 s27d* and summing overn, we
find d/dtsonuan

s1du2d,e6N, which together with Eq.(29) im-
plies that the DNLS norm in the general KG model behaves
as A /N,se2/CKdfse4td (where f is some function of order
1). The DNLS Hamiltonian is then expressed as

H =
ul8u
CK

2 o
n
FCKsan+1

s1d an
s1d* + an+1

s1d*an
s1dd −

l8

2
uan

s1du4G . s30d

By taking ȧn
s1d* 3 s27d+ ȧn

s1d3 s27d* , summing overn, and de-
fining Hs1d=onf−2duan

s1du2+sl8 /2duan
s1du4+CKuan+1

s1d −an
s1du2g,

whered;svb
2−1d /2, we finddHs1d /dt,e8N. Imposing the

assumption of small couplingCK,e2 (which together with
the small-amplitude condition also impliesd,e2), we get
that H /N=−sul8u /NCK

2dfHs1d+2sd−CKdonuan
s1du2g, fse4td.

Thus, the DNLS quantitiesA /N andH /N correspond in the
general case to two KG quantities of order unity, whose time
variation is(at least) two orders of magnitude slower than the
typical time scale for the Fourier amplitudesan

s1d (which in
turn is two orders of magnitude slower than the time scale of
oscillations of the original amplitudesun).

Let us now explicitly calculate these quantities in terms of
KG amplitudes and velocitiesun,u̇n. We do this by calculat-
ing time averages of the different contributions to the KG
Hamiltonian(17) with general potential energy(18). Insert-
ing the expansion(20), averaging out all oscillating terms,
and using Eqs.(25) and (26), we get

Ko
n

un
2

2 L =
1

2o
n
KS o

p=−3

3

an
spdeipvbt + Ose4dD2L = o

n
Suan

s1du2 +
1

2
san

s0dd2 + uan
s2du2D + Ose6d = o

n

uan
s1du2 +

19

9
a2o

n

uan
s1du4 + Ose6d.

s31d

Further, using also Eq.(27) we get for the time-averaged kinetic energy

Ko
n

u̇n
2

2 L =
1

2o
n
KS o

p=−3

3

sȧn
spd + ipvban

spddeipvbt + Ose4dD2L
= vb

2o
n

suan
s1du2 + 4uan

s2du2d + ivbo
n

san
s1dȧn

s1d* − an
s1d* ȧn

s1dd + Ose6d

= s1 + 2CKdo
n

uan
s1du2 + S−

26

9
a2 + 3b8Do

n

uan
s1du4 − CKo

n

san+1
s1d an

s1d* + an+1
s1d*an

s1dd + Ose6d. s32d

For the time-averaged cubic energy, we get
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Ko
n

a
un

3

3
L =

a

3
o

n

ks o
p=−3

3

an
spdeipvbt + Ose4dd3l

=
a

3
o

n

h6an
s0duan

s1du2 + 3fan
s2dsan

s1d*d2 + an
s2d*san

s1dd2gj + Ose6d = −
10

3
a2o

n

uan
s1du4 + Ose6d s33d

for the quartic energy

Ko
n

b8
un

4

4 L =
b8

4 o
n
KS o

p=−3

3

an
spdeipvbt + Ose4dD4L =

3

2
b8o

n

uan
s1du4 + Ose6d, s34d

and for the coupling-energy

Ko
n

CK

2
sun+1 − und2L = 2CKo

n

uan
s1du2 − CKo

n

san+1
s1d an

s1d* + an+1
s1d*an

s1dd + Ose6d. s35d

Using Eq.(29), we can then write an approximate explicit expression for the DNLS norm as

A =
ul8u
CK

SKo
n=1

N
un

2

2L +
19

30Ko
n

a
un

3

3 LD + Ose4d. s36d

Note that in particular for the symmetric casesa=0d, the DNLS norm is, toOse4d, directly proportional to the averaged
harmonic part of the on-site potential, while for the general case there is also an additional correction due to the cubic
contribution.

Then, there are several(indeed, infinitely many) ways of combining the quantities(31)–(35), which all yield approximate
(to ordere2) expressions for the DNLS Hamiltonian(30). One way of involving the KG HamiltonianH (17) (showing thatH
andH indeed are nontrivially related) is to write

H = −
ul8u
CK

2 FH −Ko
n

u̇n
2

2 L − s1 + 2CKdKo
n

un
2

2 L −
1

2Ko
n

aun
3

3 LG + Ose2d. s37d

This is in some sense the most appealing KG analog to the DNLS Hamiltonian, since it emphasizes the contributions from the
coupling and quartic energies to the KG Hamiltonian. Using this expression, we obtain the condition for the phase-transition
curve in terms of the KG Hamiltonian and other quantities as

H

N
= l8S 1

NKo
n

un
2

2 L +
19

30

1

NKo
n

a
un

3

3 LD2

+
1

NKo
n

u̇n
2

2 L + s1 + 2CKd
1

NKo
n

un
2

2 L +
1

2

1

NKo
n

aun
3

3 L + Ose6d. s38d

An example of another expression forH is

H = −
ul8u
2CK

2 FH − 2s1 + 2CKdKo
n

un
2

2 L −
3

2Ko
n

aun
3

3 L −Ko
n

b8un
4

4 LG + Ose2d, s39d

which notably does not explicitly include the quartic part of the on-site energy.
Note also the following: By adding together all contributions from Eqs.(31)–(35), we express the KG HamiltonianH in

terms of the fundamental Fourier amplitudesan
s1d as

H = 2s1 + 2CKdo
n

uan
s1du2 + S−

37

9
a2 +

9

2
b8Do

n

uan
s1du4 − 2CKo

n

san+1
s1d an

s1d* + an+1
s1d*an

s1dd + Ose6d. s40d
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Comparing with the expression(30) for the DNLS Hamil-
tonian, we see that, generally,

H = −
2CK

2

ul8u
H + 2s1 + 2CKdo

n

uan
s1du2

+ S−
7

9
a2 +

3

2
b8Do

n

uan
s1du4 + Ose6d. s41d

So in the very special case whena2= 27
14b8, the coefficient in

front of on uan
s1du4 in Eq. (41) vanishes, and then(and only

then) is it possible to simply express the KG conserved quan-
tity H in terms of the DNLS conserved quantitiesH andA,

H =
2CK

ul8u
f− CKH + s1 + 2CKdAg + Ose6d, s42d

and to obtain an expression for the phase-transition curve
involving only the average KG HamiltonianH /N and the
average normA /N [calculated, e.g., using Eq.(36)],

H

N
=

CK

ul8u
A
N
S2CK + 1 −CK

A
N
D + Ose6d. s43d

It is quite remarkable that one of the most studied examples,
the Morse potentialVsud= 1

2se−u−1d2, belongs to this special
class, since for Morsea=−3

2 andb8= 7
6 s⇒l8=−4d.

In Fig. 6, we show an example of results from long-time
numerical integration of the Morse KG model, with a
slightly perturbed constant-amplitude solution as initial con-
dition. As is well known, such an initial condition leads to
breather formation through the modulational instability(e.g.,
Ref. [12]), which is explicitly shown in Fig. 6(a). In Fig.
6(b), we show the variation of the above-derived approxi-
mate expressions for the DNLS quantitiesA andH during
the simulation time. Note that for moderate integration times
[middle part of Fig. 6(b)], the three different expressions for
H are close and agree well within the expected accuracy
Ose2d. They also remain far from the localization transition
line (9) [lower curve in Fig. 6(b)]. However, for larger inte-

gration times, the three curves diverge from each other[left
part of Fig. 6(b)], where in particular Eqs.(42) and (37)
indicate an asymptotic decrease ofH while Eq. (39) indi-
cates an increase. This discrepancy can be traced to the fact
that the different expressions give different relative weights
to the cubic and quartic anharmonic energies. As long as the
amplitude remains small everywhere in the lattice, this dif-
ference is not important as all expressions are equivalent to
Ose2d. However, as breathers grow, locally the oscillation
amplitudes become significantly larger, indicating the begin-
ning of a local breakdown of the validity of the DNLS ap-
proximation at the breather sites. According to Eqs.(33) and
(34), the ratio between the averaged cubic and quartic parts
of the anharmonic on-site energy remains fixed within the
DNLS approximation,

Ko
n

a
un

3

3 LYKo
n

b8
un

4

4 L = −
20

9

a2

b8
+ Ose2d. s44d

As can be seen from the inset in Fig. 6(b), the relative con-
tribution from the quartic energy continuously increases with
time, and gets significantly larger than the DNLS prediction
(44) as the breathers grow.

As another illustration of the role of the DNLS quantities
for the KG dynamics, we consider a thermalized KG lattice
with a pure(hard) quartic potential,Vsud=u4/4 (i.e., a=0,
b8=1). We perform the following numerical experiment.
First, we drive the system into a thermalized state by cou-
pling it to a thermal bath at temperatureT8, using standard
Langevin dynamics by adding a fluctuation term −Fnstd and
a damping termhu̇n to the left-hand side of Eq.(19). (Note
that this temperatureT8 is not equivalent to the previously
discussed DNLS temperatureT, since, as shown above, the
DNLS HamiltonianH is nontrivially related to the energyH
of the KG chain.) The fluctuation forceFnstd is taken as a
Gaussian white noise with zero mean and the autocorrelation
function kFnstdFn8st8dl=2hT8dst− t8ddnn8, according to the
fluctuation-dissipation theorem(with kB=1). As can be seen
from Fig. 7(a), with the chosen damping constanth=0.1 the

FIG. 6. (Color online) Numerical integration of KG Morse chain withCK=0.005,N=200, and randomly perturbed constant-amplitude
initial conditionuns0d=0.05.(a) Time evolution of local energy density(note logarithmic time scale). (b) Main figure:H /N vs A /N for the
simulation in(a), with A calculated from Eq.(36) and, from top to bottom in the left part of the figure,H calculated from Eqs.(39), (37),
and (42), respectively. Time runs from right to left(i.e., A /N decreases). Lowest curve is the localization transition line(9). Inset in (b)
shows the ratio of time-averaged cubic(33) to quartic(34) energies vs time, compared to the DNLS prediction(44) (lower line).
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lattice thermalizes after a few thousand time units, with a
time-averaged total kinetic energykonsu̇n

2/2dl=sN/2dT8 as
expected. In the thermalized regime(t.4000 in Fig. 7), we
monitor the quantitiesA /N andH /N calculated as instanta-
neous time averages over fixed time intervals[kfstdl
=s1/t0det−t0

t fst8ddt8, wheret0=100 in Fig. 7]. The results for
a large number of time instants are illustrated by the dots in
Fig. 7(b). Note that taking simultaneously the limitsb8T8
→0 (harmonic oscillations) and CK→0 (thermalized un-
coupled oscillators) with b8T8 /CK constant, Eqs.(36) and
(37) [or Eq. (39)] yield A /N→ 3

2sb8T8 /CKd and H /N
→−9

4sb8T8 /CKd2, which for the parameter values of Fig.
7(b) corresponds to the points0.75,−0.5625d on the localiza-
tion transition line(dashed line in the figure). As can be seen,
the effect of small but nonzero coupling and anharmonicity
is to shift the long-time averages[center of the “cloud” of
dots in Fig. 7(b)] towards smallerA /N and largerH /N
[approximatelys0.725,−0.505d in Fig. 7(b)], moving slightly
into the “non-breather-forming” regime of the DNLS
approximation. However, due to the continuous interaction
with the heat bath, the fluctuations are large, and the
probability to be in the “breather-forming” regime[below
the dashed line in Fig. 7(b)] at a given time instant is
considerable.

We then consider the effect of turning off the heat bath in
the simulations in Fig. 7 at different time instants, and con-
tinuing a microcanonical integration with the corresponding
thermalized state as initial condition. We first choose an ini-
tial condition in the “breather-forming” regime, correspond-
ing to the points0.716,−0.568d in Fig. 7(b). [Even though
this point is below the “cloud” of dots in Fig. 7(b), it does
not represent a particularly exceptional initial condition in
the thermal ensemble, since the dots represent time-averaged
values rather than instantaneous, and the fluctuations of the
latter are considerably larger.] For this particular initial con-
dition, monitoringkonsu̇n

2/2dl during the microcanonical in-
tegration shows that it corresponds to a lattice temperature
T8<0.004 94. It is quite remarkable that even with integra-
tion times longer than 106, we observe no systematic drift of

either of the quantitiesA /N or H /N. Moreover, the fluctua-
tions of these quantities calculated as fixed-interval time av-
erages over 100 time units as in Fig. 7(b) are very small(less
than 5310−4 for A /N and 3310−3 for H /N) and practically
negligible on the scale of Fig. 7(b). Thus, the system will
remain in the “breather-forming” regime, at least for ex-
tremely long time scales. Although most of the breathers that
can be observed are rather small and short-lived, examples of
larger breathers persisting for about 20 000 time units or
more are not unusual and appear repeatedly throughout the
integration time[see an example in Fig. 8(a)].

To further illustrate the dynamics on the two sides of the
transition line in Fig. 7(b), we compare in Figs. 8(b) and 8(c)
the velocity distribution functionspsu̇nd obtained by long-
time integration of two initial conditions corresponding to
the two large points in Fig. 7(b). In the breather-forming
regime[Fig. 8(b)], the calculatedpsu̇nd shows a clear devia-
tion from the standard Maxwell distribution, with a signifi-
cantly enhanced probability of larger velocities[0.2& uu̇nu
&0.35 in Fig. 8(b)]. Also the probability of very small ve-
locities suu̇nu&0.04d is enhanced[see the inset in Fig. 8(b)],
while the probability for intermediate velocities is decreased
compared to the Maxwell distribution[the decrease foruu̇nu
*0.35 in Fig. 8(b) is likely to be related to the finite size of
the system]. Thus, the breather-forming processes tend to
polarize the lattice into “hotter” regions of larger oscillations
and “colder” regions of smaller oscillations, although due to
the repeated creation and destruction of breathers at different
sites, the equipartition resultku̇n

2/2l=T8 /2 is still valid for
each site, provided that the time average is taken over a
sufficiently large interval. On the other hand, for the initial
condition belonging to the “non-breather-forming” regime
[Fig. 8(c)], no such polarization relative to the Maxwell dis-
tribution can be observed.

IV. CONCLUSIONS

We have shown how a statistical-mechanics description of
a general class of discrete nonlinear Schrödinger models

FIG. 7. Thermalization of a quartic KG chainsa=0,b8=1d with CK=0.01, N=800, coupled to a thermal bath at temperatureT8
=0.005 with dissipation constanth=0.1. (a) Time-averaged total kinetic energykonsu̇n

2/2dl. (b) H /N vs A /N for the simulation in(a), with
A calculated from Eq.(36), andH calculated from Eq.(37). Each dot represents a time average over the intervalft−100,tg at 15 382
different timest. Line in (b) is the localization transition line(9). Larger points in(b) show the locations of the initial conditions used in
Fig. 8.
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yields explicit necessary conditions for the formation of per-
sistent localized modes, in terms of thermodynamic average
values of the two conserved quantitiesH and A. Further-
more, we illustrated how this approach can be extended to
approximately describe situations with nonconserved but
slowly varying quantities(see also Ref.[16] for a different
example), and explicitly used it to explain the formation of
long-lived breathers from thermal equilibrium in weakly
coupled Klein-Gordon oscillator chains. Concerning the
roles of the degree of nonlinearitys and lattice dimensionD,
we found that, in contrast to the condition for the existence
of an energy threshold for creation of a single breather,
which involves only the productsD, s andD tend to work
in opposite directions as concerns the statistical localization
transition. The energy threshold affects only the approach to
equilibrium and not the qualitative features of the equilib-
rium state.

There are several directions in which we believe that this
work should be continued. One important issue is to develop
a quantitative theory determining the time scales for ap-
proach to equilibrium in the breather-forming regime. As we
have seen numerically, these time scales may be extremely
long, and naturally one may argue that the equilibrium states
themselves are not physically relevant if they can only be
reached after times of the order oft,1060. Another impor-
tant point regards whether the hypothesis of separation of
phase space in low-amplitude “fluctuations” and high-

amplitude “breathers” in the equilibrium state on the
breather-forming side of the transition can be put on more
rigorous grounds. Our numerical simulations are not com-
pletely conclusive in all the studied cases due to extremely
long equilibration times, but give indications that this hy-
pothesis could be valid also for large values of the norm
densitya.

Finally, we stress the important connections to current ex-
periments: Very recently, unambiguous experimental obser-
vations of discrete modulational instabilities have been re-
ported, for an optical nonlinear array[36], as well as for a
Bose-Einstein condensate in a moving optical lattice[37]. It
will be very interesting to see whether such experiments also
can confirm the DNLS result that the final outcome of these
instabilities depend, in a qualitative and quantitative manner,
on the particular values of the Hamiltonian and norm densi-
ties (the latter represents power in the optical case and par-
ticle density in the Bose-Einstein context) as predicted here.
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